966 resultados para Soil-block test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mature (clitellate) Eisenia andrei Bouche (ultra epigeic), Lumbricus rubellus Hoffmeister (epigeic), and Aporrectodea caliginosa (Savigny) (endogeic) earthworms were placed in soils treated with Pb(NO3)(2) to have concentrations in the range 1000 to 10 000 mg Pb kg(-1). After 28 days LC50(-95%confidence limit) (+95%confidence limit) values were E. andrei 5824(-361)(+898) mg Pb kg(-1), L. rubellus 2867(-193)(+145) mg Pb kg(-1) and A. caliginosa 2747(-304)(+239) mg Pb kg(-1) and EC50s for weight change were E. andrei 2841(-68)(+150) Pb kg(-1), L. rubellus 1303(-201)(+204) mg Pb kg(-1) and A. caliginosa 1208(-206)(+212) Mg Pb kg(-1). At any given soil Pb concentration, Pb tissue concentrations after 28 days were the same for all three earthworm species. In a soil avoidance test there was no difference between the behaviour of the different species. The lower sensitivity to Pb exhibited by E. andrei is most likely due to physiological adaptations associated with the modes of life of the earthworms, and could have serious implications for the use of this earthworm as the species of choice in standard toxicological testing. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erosion resistance of pressed soil blocks used for wall construction is discussed. The spray erosion test using a standardized shower spray is discussed. Spray erosion behaviour of pressed soil blocks made out of five different soils is presented. Results of laboratory and field tests are compared. Effect of clay content of the soil and density of the pressed soil block on erosion are discussed. Also the effect of water-proof coatings on erosion of soil blocks is presented. Erosion resistance of soil blocks stabilized with organic (jaggery syrup and starch) or inorganic binders is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a comparative study on the response of a buried tunnel to surface blast using the arbitrary Lagrangian-Eulerian (ALE) and smooth particle hydrodynamics (SPH) techniques. Since explosive tests with real physical models are extremely risky and expensive, the results of a centrifuge test were used to validate the numerical techniques. The numerical study shows that the ALE predictions were faster and closer to the experimental results than those from the SPH simulations which over predicted the strains. The findings of this research demonstrate the superiority of the ALE modelling techniques for the present study. They also provide a comprehensive understanding of the preferred ALE modelling techniques which can be used to investigate the surface blast response of underground tunnels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquid forms of phosphorus (P) have been shown to be more effective than granular P for promoting cereal growth in alkaline soils with high levels of free calcium carbonate on Eyre Peninsula, South Australia. However, the advantage of liquid over granular P forms of fertiliser has not been fully investigated across the wide range of soils used for grain production in Australia. A glasshouse pot experiment tested if liquid P fertilisers were more effective for growing spring wheat (Triticum aestivum L.) than granular P (monoammonium phosphate) in 28 soils from all over Australia with soil pH (H2O) ranging from 5.2 to 8.9. Application of liquid P resulted in greater shoot biomass, as measured after 4 weeks' growth (mid to late tillering, Feeks growth stage 2-3), than granular P in 3 of the acidic to neutral soils and in 3 alkaline soils. Shoot dry matter responses of spring wheat to applied liquid or granular P were related to soil properties to determine if any of the properties predicted superior yield responses to liquid P. The calcium carbonate content of soil was the only soil property that significantly contributed to predicting when liquid P was more effective than granular P. Five soil P test procedures (Bray, Colwell, resin, isotopically exchangeable P, and diffusive gradients in thin films (DGT)) were assessed to determine their ability to measure soil test P on subsamples of soil collected before the experiment started. These soil test values were then related to the dry matter shoot yields to assess their ability to predict wheat yield responses to P applied as liquid or granular P. All 5 soil test procedures provided a reasonable prediction of dry matter responses to applied P as either liquid or granular P, with the resin P test having a slightly greater predictive capacity on the range of soils tested. The findings of this investigation suggest that liquid P fertilisers do have some potential applications in non-calcareous soils and confirm current recommendations for use of liquid P fertiliser to grow cereal crops in highly calcareous soils. Soil P testing procedures require local calibration for response to the P source that is going to be used to amend P deficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An attempt is made in this paper to arrive at a methodology for generating building technologies appropriate to rural housing. An evaluation of traditional modern' technologies currently in use reveals the need for alternatives. The lacunae in the presently available technologies also lead to a definition of rural housing needs. It is emphasised that contending technologies must establish a 'goodness of fit' between the house form and the pattern of needs. A systems viewpoint which looks at the dynamic process of building construction and the static structure of the building is then suggested as a means to match the technologies to the needs. The process viewpoint emphasises the role of building materials production and transportation in achieving desired building performances. A couple of examples of technological alternatives like the compacted soil block and the polythene-stabilised soil roof covering are then discussed. The static structural system viewpoint is then studied to arrive at methodologies of cost reduction. An illustrative analysis is carried out using the dynamic programming technique, to arrive at combinations of alternatives for the building components which lead to cost reduction. Some of the technological options are then evaluated against the need patterns. Finally, a guideline for developments in building technology is suggested

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As inundações são fenômenos naturais que ocorrem devido às chuvas de grande magnitude, agravadas nas áreas urbanas pela impermeabilização do solo e ineficiência dos sistemas de drenagem. Os telhados verdes surgem como uma medida compensatória estrutural que pode reter parte da água precipitada, adiando o pico de escoamento. O objetivo deste trabalho foi de desenvolver uma combinação de solo e condicionadores para telhado verde, promovam um aumento relevante na capacidade de retenção hídrica e um maior adiamento do pico de escoamento das águas pluviais. Este estudo foi dividido em duas etapas. Na Etapa 1, foram analisadas, em colunas de percolação, três condicionadores nas seguintes concentrações: Gel retentor Stockosorb (2; 4; 6 g/dm3), Fertilizante de liberação lenta Osmocote (4,7; 7,1; 9,0 g/dm3) e Zeólita (30; 50; 70 g/dm3), em três eventos (regas) consecutivos de chuva simulada na intensidade de 57 mm/h. A avaliação das concentrações mais adequadas dentre as testadas para cada condicionante foi baseada nas análises referentes à retenção hídrica (altura do meio após a rega; tempo de adiamento do escoamento; mm retidos; intensidade da água percolada em mm/min) e à qualidade da água percolada (pH, oxigênio dissolvido, turbidez e sólidos). Na Etapa 2, foi avaliada, em vasos, a influência da presença de três espécies de plantas (Arachis pintoi; Raphanus sativus; Lavandula angustifolia) em dois tipos de meio: solo sem condicionadores; solo com condicionadores nas melhores concentrações indicadas na Etapa 1, sendo simulada apenas um evento de chuva de 57 mm/h. Foram analisados parâmetros biológicos (germinação; plantas sobreviventes; comprimento do caule e da raiz; pesos da biomassa do caule e da raiz); retenção hídrica (altura do meio após a rega; tempo de adiamento do escoamento; mm retidos; intensidade da água percolada em mm/min); qualidade da água percolada (pH; oxigênio dissolvido; turbidez; sólidos; nitrato; amônia; fósforo total). Os resultados da Etapa 1 indicaram que o gel promoveu de forma significativa um aumento na retenção hídrica, e adiou o início da percolação de água, além de promover ligeira elevação do pH na água percolada. A adição de zeólita resultou em um aumento significativo da retenção hídrica, porém tal aumento não é vantajoso visto que este representa um custo adicional que poderia ser reduzido com o aumento da proporção do gel na coluna. A adição de fertilizantes não promoveu mudanças na qualidade da água percolada. Na Etapa 2, somente o efeito da presença de A. pintoi (maior produção de biomassa de raiz e caule) e R. sativus foram avaliadas. A presença dos condicionantes no solo proporcionou um desempenho significativamente superior em relação a retenção hídrica (altura do substrato e adiamento do pico de chuva) e qualidade da água percolada (pH e turbidez) quando comparados aos testes realizados na presença somente de solo. O fertilizante influenciou nas altas concentrações dos nutrientes (nitrogênio e fósforo) na água percolado nos resultados. A presença do gel no substrato, resultou numa capacidade superior de retenção de hídrica, e consequentemente no adiamento do pico de intensidade de chuva. Sendo assim, recomenda-se a aplicação do gel em telhados verdes para futuros estudos em ambientes externos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying material properties and the panel's deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel's surface topology. Significant fluid-structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unsaturated expansive soil is a hotspot and difficulty in soil mechanics inland and outland. The expansive soil in our China is one of the widest in distributing and greatest in area, and the disaster of expansive soil happens continually as a result. The soil mechanics test, monitor, numerical simulation and engineering practice are used to research swell and shrinkage characteristic, edge strength characteristic and unsaturated strength characteristic of Mengzi expansive soil. The seep and stability of the slope for expansive soil associated with fissure are analyzed and two kinds of new technique are put forward to be used in expansive soil area, based on disaster mechnics proposed of the slope.The technique of reinforcement in road embankment is optimized also. Associated with engineering geology research of Mengzi expansive soil, mineral composition, chemical composition, specific area and cation content, dissolubility salt and agglutinate, microcosmic fabric characteristic, cause of formation and atmosphere effect depth are analyzed to explain the intrinsic cause and essence of swell and shrinkage for expansive soil. The rule between swell-shrinkage and initial state, namely initial water content, initial dry density and initial pressure, can be used to construction control. Does Response model is fit to simulate the rule, based on ternary regression analysis. It has great meaning to expansive soil engineering in area with salt or alkali. The mechanics under CD, CU and GCU of expansive soil is researched by edge surface theory to explain the remarkable effect of consolidation pressure, initial dry density, initial water content, cut velocity, drainage and reinforcement to the edge strength characteristic. The infirm hardening stress strain curves can be fitted with hyperbola model and the infirm softening curves can be fitted with exponential model. The normalization theory can be used to reveal the intrinsic unity of the otherness which is brought by different methods to the shear strength of the same kinds of samples. The unsaturated strain softening characteristic and strength envelope of remolding samples are researched by triaxial shear test based on suction controlled, the result of which is simulated by exponential function. The strength parameters of the unsaturated samples are obtained to be used in the unsaturated seep associated with rainfall. The elasticity and plasticity characters of expansive soil are researched to attain the model parameters by using modified G-A model. The humidification destroy characteristic of expansive soil is discussed to research the disaster mechanism of the slope with the back pressure increasing and suction decreasing under bias pressure consolidation. The indoor and outdoor SWCCs are measured to research the effect factors and the rule between different stress and filling environment. The moisture absorption curves can express the relationship between suction and water content in locale. The SWCCs of Mengzi expansive soil are measured by GDS stress path trixial system. The unsaturated infiltration function is gained to research seep and stability of the slope of expansive soil. The rainfall infiltration and ability of slope considering multifarious factors are studied by analyzing fissure cause of Mengzi expansive soil. The mechanism of the slope disaster is brought forward by the double controlling effect between suction and fissure. Two new kinds of technique are put forward to resolve disaster of expansive soil and the technique of reinforcement on embankment is optimized, which gives a useful help to solving engineering trouble.